A new estimate for the number of solutions of a system of polynomial equations
Langue
en
Article de revue
Ce document a été publié dans
Comptes rendus de l'Académie des sciences. Série I, Mathématique. 2007, vol. 345, p. 335-340
Elsevier
Résumé en anglais
A theorem of Kuˇsnirenko and Bernˇstein shows that the number of isolated roots in the torus of a system of polynomials is bounded above by the mixed volume of the Newton polytopes of the given polynomials, and that this ...Lire la suite >
A theorem of Kuˇsnirenko and Bernˇstein shows that the number of isolated roots in the torus of a system of polynomials is bounded above by the mixed volume of the Newton polytopes of the given polynomials, and that this upper bound is generically exact. We improve on this result by introducing refined combinatorial invariants of polynomials and a generalization of the mixed volume of convex bodies: the mixed integral of concave functions.< Réduire
Origine
Importé de halUnités de recherche