Can we dream of a 1-adic Langlands correspondence?
CARUSO, Xavier
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
CARUSO, Xavier
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
Mathematics Going Forward, Mathematics Going Forward. 2023, vol. 2313, p. 537-560
Springer International Publishing
Résumé en anglais
After observing that some constructions and results in the p-adic Langlands programme are somehow independent from p, we formulate the hypothesis that this astonishing uniformity could be explained by a 1-adic Langlands ...Lire la suite >
After observing that some constructions and results in the p-adic Langlands programme are somehow independent from p, we formulate the hypothesis that this astonishing uniformity could be explained by a 1-adic Langlands correspondence.< Réduire
Project ANR
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Origine
Importé de halUnités de recherche