Dynamical zeta functions for billiards
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $D \subset {\mathbb R}^d,\: d \geqslant 2,$ be the union of a finite collection of pairwise disjoint strictly convex compact obstacles. Let $\mu_j \in {\mathbb C},\: {\rm Im}\: \mu_j > 0,$ be the resonances of the ...Lire la suite >
Let $D \subset {\mathbb R}^d,\: d \geqslant 2,$ be the union of a finite collection of pairwise disjoint strictly convex compact obstacles. Let $\mu_j \in {\mathbb C},\: {\rm Im}\: \mu_j > 0,$ be the resonances of the Laplacian in the exterior of $D$ with Neumann or Dirichlet boundary condition on $\partial D$. For $d$ odd, $u(t) = \sum_j e^{i |t| \mu_j}$ is a distribution in $ \mathcal{D}'({\mathbb R} \setminus \{0\})$ and the Laplace transforms of the leading singularities of $u(t)$ yield the dynamical zeta functions $\eta_{\mathrm N},\: \eta_{\mathrm D}$ for Neumann and Dirichlet boundary conditions, respectively. These zeta functions play a crucial role in the analysis of the distribution of the resonances. Under the non-eclipse condition (1.1), for $d \geqslant 2$ we show that $\eta_{\mathrm N}$ and $\eta_\mathrm D$ admit a meromorphic continuation in the whole complex plane. In the particular case when the boundary $\partial D$ is real analytic, by using a result of Fried (1995), we prove that the function $\eta_\mathrm{D}$ cannot be entire. Following the result of Ikawa (1988), this implies the existence of a strip $\{z \in {\mathbb C}: \: 0 < {\rm Im}\: z \leq\delta\}$ containing an infinite number of resonances $\mu_j$ for the Dirichlet problem. Moreover, for $\alpha \gg 1$ we obtain a lower bound for the resonances lying in this strip.< Réduire
Origine
Importé de halUnités de recherche