Asymptotic behavior of bifurcating autoregressive processes
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
GÉGOUT-PETIT, Anne
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
GÉGOUT-PETIT, Anne
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Mathematical models for cell division, 2009-03-03, Paris. 2009-03-03
Résumé en anglais
Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive processes to binary tree structured data. They were first introduced by Cowan and Staudte for cell lineage data. We have carried out a sharp ...Lire la suite >
Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive processes to binary tree structured data. They were first introduced by Cowan and Staudte for cell lineage data. We have carried out a sharp analysis of the asymptotic properties of the least squares (LS) estimators of the unknown parameters of first-order BAR processes and improved the previous results of Guyon via a martingale approach, based on the generation-wise filtration. Namely, we have established the almost sure convergence of our LS estimators with a sharp rate of convergence, together with the quadratic strong law and the central limit theorem.< Réduire
Origine
Importé de halUnités de recherche