Fast convergence of inertial dynamics with Hessian-driven damping under geometry assumptions
RONDEPIERRE, Aude
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC]
< Réduire
Institut National des Sciences Appliquées - Toulouse [INSA Toulouse]
Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
First-order optimization algorithms can be considered as a discretization of ordinary differential equations (ODEs). In this perspective, studying the properties of the corresponding trajectories may lead to convergence ...Lire la suite >
First-order optimization algorithms can be considered as a discretization of ordinary differential equations (ODEs). In this perspective, studying the properties of the corresponding trajectories may lead to convergence results which can be transfered to the numerical scheme. In this paper we analyse the following ODE introduced by Attouch et al.: ∀t ⩾ t0, ẍ(t) + α t ẋ(t) + βHF (x(t)) ẋ(t) + ∇F (x(t)) = 0, where α > 0, β > 0 and HF denotes the Hessian of F. This ODE can be derived to build numerical schemes which do not require F to be twice differentiable as shown by Attouch et al. We provide strong convergence results on the error F (x(t)) − F * and integrability properties on ∥∇F (x(t))∥ under some geometry assumptions on F such as quadratic growth around the set of minimizers. In particular, we show that the decay rate of the error for a strongly convex function is O(t −α−ε) for any ε > 0. These results are briefly illustrated at the end of the paper.< Réduire
Mots clés en anglais
Convex optimization
Hessian-driven damping
Lyapunov analysis
Lojasiewicz property
ODEs
Project ANR
Mathématiques de l'optimisation déterministe et stochastique liées à l'apprentissage profond - ANR-19-CE23-0017
Origine
Importé de halUnités de recherche