Levy solutions of a randomly forced Burgers equation
Langue
en
Article de revue
Ce document a été publié dans
Journal of Statistical Physics. 2009, vol. 136, p. 1095
Springer Verlag
Résumé en anglais
We consider the one dimensional Burgers equation forced by a brownian in space and white noise in time process $\partial_t u + u \partial_x u = f(x,t)$, with $2E(f(x,t)f(y,s)) = (|x|+|y|-|x-y|)\delta(t-s)$ and we show that ...Lire la suite >
We consider the one dimensional Burgers equation forced by a brownian in space and white noise in time process $\partial_t u + u \partial_x u = f(x,t)$, with $2E(f(x,t)f(y,s)) = (|x|+|y|-|x-y|)\delta(t-s)$ and we show that there are Levy processes solutions, for which we give the evolution equation of the characteristic exponent. In particular we give the explicit solution in the case $u_0(x)=0$.< Réduire
Mots clés en anglais
Burgers equation
Levy process
random forcing
Origine
Importé de halUnités de recherche