A stochastic Gauss-Newton algorithm for regularized semi-discrete optimal transport
SIVIERO, Emilia
Institut Polytechnique de Paris [IP Paris]
Département Images, Données, Signal [IDS]
Signal, Statistique et Apprentissage [S2A]
< Leer menos
Institut Polytechnique de Paris [IP Paris]
Département Images, Données, Signal [IDS]
Signal, Statistique et Apprentissage [S2A]
Idioma
en
Article de revue
Este ítem está publicado en
Information and Inference: A Journal of the IMA. 2022-05-19p. 1-56
Resumen en inglés
We introduce a new second order stochastic algorithm to estimate the entropically regularized optimal transport cost between two probability measures. The source measure can be arbitrary chosen, either absolutely continuous ...Leer más >
We introduce a new second order stochastic algorithm to estimate the entropically regularized optimal transport cost between two probability measures. The source measure can be arbitrary chosen, either absolutely continuous or discrete, while the target measure is assumed to be discrete. To solve the semi-dual formulation of such a regularized and semi-discrete optimal transportation problem, we propose to consider a stochastic Gauss-Newton algorithm that uses a sequence of data sampled from the source measure. This algorithm is shown to be adaptive to the geometry of the underlying convex optimization problem with no important hyperparameter to be accurately tuned. We establish the almost sure convergence and the asymptotic normality of various estimators of interest that are constructed from this stochastic Gauss-Newton algorithm. We also analyze their non-asymptotic rates of convergence for the expected quadratic risk in the absence of strong convexity of the underlying objective function. The results of numerical experiments from simulated data are also reported to illustrate the nite sample properties of this Gauss-Newton algorithm for stochasticregularized optimal transport, and to show its advantages over the use of the stochastic gradient descent, stochastic Newton and ADAM algorithms.< Leer menos
Palabras clave en inglés
Stochastic optimization
Stochastic Gauss-Newton algorithm
Optimal transport
Entropic regularization
Convergence of random variables.
Proyecto ANR
Mathématiques de l'optimisation déterministe et stochastique liées à l'apprentissage profond - ANR-19-CE23-0017
Orígen
Importado de HalCentros de investigación