Upper bounds on the heights of polynomials and rational fractions from their values
KIEFFER, Jean
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
KIEFFER, Jean
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Acta Arithmetica. 2022-03-21, vol. 203, n° 1, p. 49-68
Instytut Matematyczny PAN
Resumen en inglés
Let $F$ be a univariate polynomial or rational fraction of degree $d$ defined over a number field. We give bounds from above on the absolute logarithmic Weil height of $F$ in terms of the heights of its values at small ...Leer más >
Let $F$ be a univariate polynomial or rational fraction of degree $d$ defined over a number field. We give bounds from above on the absolute logarithmic Weil height of $F$ in terms of the heights of its values at small integers: we review well-known bounds obtained from interpolation algorithms given values at $d+1$ (resp. $2d+1$) points, and obtain tighter results when considering a larger number of evaluation points.< Leer menos
Palabras clave en inglés
Polynomials
Rational fraction
Heights
Orígen
Importado de HalCentros de investigación