Accelerating stabilization of whole-heart models after changes in cycle length
BUKHARI, Hassaan
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
SÁNCHEZ, Carlos
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
PUEYO, Esther
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Voir plus >
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
BUKHARI, Hassaan
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
SÁNCHEZ, Carlos
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
PUEYO, Esther
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Aragón Institute of Engineering Research [Zaragoza] [I3A]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
POTSE, Mark
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Computing in Cardiology 2022, 2022-09-05, Tampere.
Résumé en anglais
Parameter changes can cause long-term drift in membrane models. To reduce the cost of whole-heart simulations with such changes the stabilization can be performed in isolated-cell models, but it can then still take many ...Lire la suite >
Parameter changes can cause long-term drift in membrane models. To reduce the cost of whole-heart simulations with such changes the stabilization can be performed in isolated-cell models, but it can then still take many beats to stabilize the full model. We hypothesized that differences in activation time leading to cycle length (CL) variability before the first beat contribute to this. To remove this variability we froze most state variables of the model until the sodium current activated. Simulations were performed with CL 400, 500, 600 and 1000 ms and modified Ten Tusscher-Panfilov 2006 dynamics. Isolated endocardial, mid-myocardial, and epicardial cells were simulated for 1000 beats. Their final states were then copied to a model of the whole human ventricles, which was run for 5 beats, with and without freezing. Stabilization of the full model took three to four beats. Freezing of the membrane state accelerated stabilization in some cell types but caused opposite drifts in others. Drifts were largest in the epicardial and mid-myocardial layers, and not in particular at their interfaces. Freezing of membrane state may help to accelerate stabilization but in our scenarios other types of drift dominate and may be aggravated by freezing, as it inhibits electrotonic interactions.< Réduire
Projet Européen
Personalised In-Silico Cardiology
Is your heart aging well? A systems biology approach to characterize cardiac aging from the cell to the body surface
Is your heart aging well? A systems biology approach to characterize cardiac aging from the cell to the body surface
Project ANR
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Origine
Importé de halUnités de recherche