A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser
CHAMBOLLE, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Voir plus >
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
CHAMBOLLE, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
< Réduire
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Langue
en
Communication dans un congrès
Ce document a été publié dans
International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'23), 2023-05-21, Santa Margherita di Pula. 2023-05-21, vol. 14009
Springer
Résumé en anglais
This paper presents a new convergent Plug-and-Play (PnP) algorithm. PnP methods are efficient iterative algorithms for solving image inverse problems formulated as the minimization of the sum of a data-fidelity term and a ...Lire la suite >
This paper presents a new convergent Plug-and-Play (PnP) algorithm. PnP methods are efficient iterative algorithms for solving image inverse problems formulated as the minimization of the sum of a data-fidelity term and a regularization term. PnP methods perform regularization by plugging a pre-trained denoiser in a proximal algorithm, such as Proximal Gradient Descent (PGD). To ensure convergence of PnP schemes, many works study specific parametrizations of deep denoisers. However, existing results require either unverifiable or suboptimal hypotheses on the denoiser, or assume restrictive conditions on the parameters of the inverse problem. Observing that these limitations can be due to the proximal algorithm in use, we study a relaxed version of the PGD algorithm for minimizing the sum of a convex function and a weakly convex one. When plugged with a relaxed proximal denoiser, we show that the proposed PnP-$\alpha$PGD algorithm converges for a wider range of regularization parameters, thus allowing more accurate image restoration.< Réduire
Mots clés en anglais
Plug-and-Play
Nonconvex optimization
Inverse problems
Project ANR
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - ANR-19-CE23-0027
Models, Inference and Synthesis for Texture In Color - ANR-19-CE40-0005
Models, Inference and Synthesis for Texture In Color - ANR-19-CE40-0005
Origine
Importé de halUnités de recherche