Improvements in the computation of ideal class groups of imaginary quadratic number fields
BIASSE, Jean-François
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
BIASSE, Jean-François
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Autre document
Ce document a été publié dans
2009
Résumé en anglais
We investigate improvements to the algorithm for the computation of ideal class group described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing ...Lire la suite >
We investigate improvements to the algorithm for the computation of ideal class group described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing the linear algebra phase. We achieve a significant speed-up and are able to compute 110-decimal digits discriminant ideal class group in less than a week.< Réduire
Mots clés en anglais
Ideal Class group
index calculus
large prime variant
Gaussian elimination
Hermite normal form
Origine
Importé de halUnités de recherche