The special case of cyclotomic fields in quantum algorithms for unit groups
BARBULESCU, Razvan
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
BARBULESCU, Razvan
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Progress in cryptology -- AFRICACRYPT 2023Lecture notes in computer science (LNCS), Progress in cryptology -- AFRICACRYPT 2023Lecture notes in computer science (LNCS), AFRICACRYPT 2023, 2023-07-18, Soussa. 2023-07-21, vol. 14064, p. 229
Springer
Résumé en anglais
Unit group computations are a cryptographic primitive for which one has a fast quantum algorithm, but the required number of qubits is Õ(m 5). In this work we propose a modification of the algorithm for which the number ...Lire la suite >
Unit group computations are a cryptographic primitive for which one has a fast quantum algorithm, but the required number of qubits is Õ(m 5). In this work we propose a modification of the algorithm for which the number of qubits is Õ(m 2) in the case of cyclotomic fields. Moreover, under a recent conjecture on the size of the class group of $ \mathbb{Q}(ζ_m + ζ _m^{−1})$, the quantum algorithms is much simpler because it is a hidden subgroup problem (HSP) algorithm rather than its error estimation counterpart: continuous hidden subgroup problem (CHSP). We also discuss the (minor) speed-up obtained when exploiting Galois automorphisms thanks to the Buchmann-Pohst algorithm over OK-lattices.< Réduire
Mots clés en anglais
Quantum algorithms
unit groups
Cyclotomic fields
lattices
Origine
Importé de halUnités de recherche