Phase-field model of bilipid membrane electroporation
COLLIN, Annabelle
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
COLLIN, Annabelle
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
< Réduire
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Mathematical Biology. 2023-07, vol. 87, n° 18
Springer
Résumé en anglais
This paper proposes a new model of membrane electropermeabilisation that combines the water content of the membrane and the transmembrane voltage. Interestingly, thanks to a well defined free-energy of the membrane, we ...Lire la suite >
This paper proposes a new model of membrane electropermeabilisation that combines the water content of the membrane and the transmembrane voltage. Interestingly, thanks to a well defined free-energy of the membrane, we somehow generalise the seminal approach of Chizmadzhev, Weaver and Krassowska, getting rid of the geometrical cylindrical assumption upon which most of the current electroporation models are based. Our approach is physically relevant and we recover a surface diffusion equation of the lipid phase proposed by Leguèbe et al. in a previous phenomenological model. We also perform a fine analysis of the involved nonlocal operators in two simple configurations (a spherical membrane and a flat periodic membrane) that enables us to compare the time constants of the phenomenon in spherical and flat membranes. An accurate splitting scheme combined with Fast Fourier Transforms is developed for efficient computations of the model. Our numerical results enable us to make a link between the molecular dynamics simulations of membrane permeabilisation and the experimental observations on vesicles and cells.< Réduire
Mots clés en anglais
Electroporation
Allen-Cahn
nonlocal PDE
Origine
Importé de halUnités de recherche