Finding Orientations of Supersingular Elliptic Curves and Quaternion Orders
DARTOIS, Pierrick
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
DARTOIS, Pierrick
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
WESOLOWSKI, Benjamin
Lithe and fast algorithmic number theory [LFANT]
Unité de Mathématiques Pures et Appliquées [UMPA-ENSL]
Centre National de la Recherche Scientifique [CNRS]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Unité de Mathématiques Pures et Appliquées [UMPA-ENSL]
Centre National de la Recherche Scientifique [CNRS]
Langue
en
Document de travail - Pré-publication
Ce document a été publié dans
2023
Résumé en anglais
Orientations of supersingular elliptic curves encode the information of an endomorphism of the curve. Computing the full endomorphism ring is a known hard problem, so one might consider how hard it is to find one such ...Lire la suite >
Orientations of supersingular elliptic curves encode the information of an endomorphism of the curve. Computing the full endomorphism ring is a known hard problem, so one might consider how hard it is to find one such orientation. We prove that access to an oracle which tells if an elliptic curve is $\mathfrak{O}$-orientable for a fixed imaginary quadratic order $\mathfrak{O}$ provides non-trivial information towards computing an endomorphism corresponding to the $\mathfrak{O}$-orientation. We provide explicit algorithms and in-depth complexity analysis. We also consider the question in terms of quaternion algebras. We provide algorithms which compute an embedding of a fixed imaginary quadratic order into a maximal order of the quaternion algebra ramified at $p$ and $\infty$. We provide code implementations in Sagemath which is efficient for finding embeddings of imaginary quadratic orders of discriminants up to $O(p)$, even for cryptographically sized $p$.< Réduire
Mots clés en anglais
Number Theory (math.NT)
FOS: Mathematics
Project ANR
Méthodes pour les variétés abéliennes de petite dimension - ANR-20-CE40-0013
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Origine
Importé de halUnités de recherche