An analytic approach to estimating the solutions of Bézout's polynomial identity
Langue
en
Document de travail - Pré-publication
Ce document a été publié dans
2023
Résumé en anglais
This paper contains sharp bounds on the coefficients of the polynomials $R$ and $S$ which solve the classical one variable Bézout identity $A R + B S = 1$, where $A$ and $B$ are polynomials with no common zeros. The bounds ...Lire la suite >
This paper contains sharp bounds on the coefficients of the polynomials $R$ and $S$ which solve the classical one variable Bézout identity $A R + B S = 1$, where $A$ and $B$ are polynomials with no common zeros. The bounds are expressed in terms of the separation of the zeros of $A$ and $B$. Our proof involves contour integral representations of these coefficients. We also obtain an estimate on the norm of the inverse of the Sylvester matrix.< Réduire
Mots clés en anglais
Bézout identity
Cauchy integral formula
Sylvester matrix
Corona theorem
Project ANR
Noyaux reproduisants en Analyse et au-delà - ANR-18-CE40-0035
Centre Européen pour les Mathématiques, la Physique et leurs Interactions - ANR-11-LABX-0007
Centre Européen pour les Mathématiques, la Physique et leurs Interactions - ANR-11-LABX-0007
Origine
Importé de halUnités de recherche