Recovering the velocity in a 1-d non-local transport equation
Langue
en
Article de revue
Ce document a été publié dans
Mathematical Control and Related Fields. 2023-05
AIMS
Résumé en anglais
In this article, we consider an inverse problem for the non-local system $\partial_{t} \rho +\lambda(W(t))\partial_x\rho=0$, in which $\displaystyle W(t)=\int_0^1 \rho(x,t)dx$ is the total mass of the system. We propose ...Lire la suite >
In this article, we consider an inverse problem for the non-local system $\partial_{t} \rho +\lambda(W(t))\partial_x\rho=0$, in which $\displaystyle W(t)=\int_0^1 \rho(x,t)dx$ is the total mass of the system. We propose an algorithm and derive a formula to reconstruct the velocity function $\lambda(\cdot)$, assumed to be strictly positive, in an interval $[W_{-},W_+]$ which contains the initial total mass $W(0)$, by suitably choosing the influx condition $u(t) = \lambda(W(t)) \rho(0,t)$ and measuring the outflux $y(t) = \lambda(W(t)) \rho(1,t)$. Some numerical experiments are provided to illustrate the performance of our method.< Réduire
Mots clés en anglais
Transport equation
inverse problem
non-local velocity
Project ANR
Nouvelles directions en contrôle et stabilisation: Contraintes et termes non-locaux - ANR-20-CE40-0009
Origine
Importé de halUnités de recherche