Scale-Invariant Estimates and Vorticity Alignment for Navier–Stokes in the Half-Space with No-Slip Boundary Conditions
PRANGE, Christophe
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
PRANGE, Christophe
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Langue
en
Article de revue
Ce document a été publié dans
Archive for Rational Mechanics and Analysis. 2019-06-19, vol. 235, p. 881–926
Springer Verlag
Résumé en anglais
This paper is concerned with geometric regularity criteria for the Navier-Stokes equations in $\mathbb{R}^3_{+}\times (0,T)$ with no-slip boundary condition, with the assumption that the solution satisfies the `ODE blow-up ...Lire la suite >
This paper is concerned with geometric regularity criteria for the Navier-Stokes equations in $\mathbb{R}^3_{+}\times (0,T)$ with no-slip boundary condition, with the assumption that the solution satisfies the `ODE blow-up rate' Type I condition. More precisely, we prove that if the vorticity direction is uniformly continuous on subsets of $$\bigcup_{t\in(T-1,T)} \big(B(0,R)\cap\mathbb{R}^3_{+}\big)\times {\{t\}},\,\,\,\,\,\, R=O(\sqrt{T-t})$$ where the vorticity has large magnitude, then $(0,T)$ is a regular point. This result is inspired by and improves the regularity criteria given by Giga, Hsu and Maekawa (2014). We also obtain new local versions for suitable weak solutions near the flat boundary. Our method hinges on new scaled Morrey estimates, blow-up and compactness arguments and `persistence of singularites' on the flat boundary. The scaled Morrey estimates seem to be of independent interest.< Réduire
Project ANR
Bords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027
Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure - ANR-18-CE40-0027
Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure - ANR-18-CE40-0027
Origine
Importé de halUnités de recherche