Model order reduction by convex displacement interpolation
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
TADDEI, Tommaso
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Leer más >
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
TADDEI, Tommaso
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Document de travail - Pré-publication
Este ítem está publicado en
2023-10-06
Resumen en inglés
We present a nonlinear interpolation technique for parametric fields that exploits optimal transportation of coherent structures of the solution to achieve accurate performance. The approach generalizes the nonlinear ...Leer más >
We present a nonlinear interpolation technique for parametric fields that exploits optimal transportation of coherent structures of the solution to achieve accurate performance. The approach generalizes the nonlinear interpolation procedure introduced in [Iollo, Taddei, J. Comput. Phys., 2022] to multi-dimensional parameter domains and to datasets of several snapshots. Given a library of high-fidelity simulations, we rely on a scalar testing function and on a point set registration method to identify coherent structures of the solution field in the form of sorted point clouds. Given a new parameter value, we exploit a regression method to predict the new point cloud; then, we resort to a boundary-aware registration technique to define bijective mappings that deform the new point cloud into the point clouds of the neighboring elements of the dataset, while preserving the boundary of the domain; finally, we define the estimate as a weighted combination of modes obtained by composing the neighboring snapshots with the previously-built mappings. We present several numerical examples for compressible and incompressible, viscous and inviscid flows to demonstrate the accuracy of the method. Furthermore, we employ the nonlinear interpolation procedure to augment the dataset of simulations for linear-subspace projection-based model reduction: our data augmentation procedure is designed to reduce offline costs -- which are dominated by snapshot generation -- of model reduction techniques for nonlinear advection-dominated problems.< Leer menos
Palabras clave en inglés
model order reduction
nonlinear approximations
Proyecto europeo
Accurate Roms for Industrial Applications
Orígen
Importado de HalCentros de investigación