Efficient Posterior Sampling For Diverse Super-Resolution with Hierarchical VAE Prior
PAPADAKIS, Nicolas
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Langue
en
Communication dans un congrès
Ce document a été publié dans
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications, 2024-02-27, Rome.
Résumé en anglais
We investigate the problem of producing diverse solutions to an image super-resolution problem.From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which ...Lire la suite >
We investigate the problem of producing diverse solutions to an image super-resolution problem.From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which requires the definition of a prior distribution on the high-resolution images. In this work, we propose to use a pretrained hierarchical variational autoencoder (HVAE) as a prior. We train a lightweight stochastic encoder to encode low-resolution images in the latent space of a pretrained HVAE. At inference, we combine the low-resolution encoder and the pretrained generative model to super-resolve an image. We demonstrate on the task of face super-resolution that our method provides an advantageous trade-off between the computational efficiency of conditional normalizing flows techniques and the sample quality of diffusion based methods.< Réduire
Project ANR
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - ANR-19-CE23-0027
Origine
Importé de halUnités de recherche