Plug-and-Play image restoration with Stochastic deNOising REgularization
LECLAIRE, Arthur
Image, Modélisation, Analyse, GEométrie, Synthèse [IMAGES]
Département Images, Données, Signal [IDS]
Voir plus >
Image, Modélisation, Analyse, GEométrie, Synthèse [IMAGES]
Département Images, Données, Signal [IDS]
LECLAIRE, Arthur
Image, Modélisation, Analyse, GEométrie, Synthèse [IMAGES]
Département Images, Données, Signal [IDS]
Image, Modélisation, Analyse, GEométrie, Synthèse [IMAGES]
Département Images, Données, Signal [IDS]
PAPADAKIS, Nicolas
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Langue
en
Document de travail - Pré-publication
Ce document a été publié dans
2024-02-01
Résumé en anglais
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image ...Lire la suite >
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.< Réduire
Project ANR
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - ANR-19-CE23-0027
Origine
Importé de halUnités de recherche