Two-Dimensional Linear Implicit Relaxed Scheme for Hyperbolic Conservation Laws
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
PUPPO, Gabriella
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
THOMANN, Andrea
TOkamaks and NUmerical Simulations [TONUS]
Institut de Recherche Mathématique Avancée [IRMA]
TOkamaks and NUmerical Simulations [TONUS]
Institut de Recherche Mathématique Avancée [IRMA]
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
PUPPO, Gabriella
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
THOMANN, Andrea
TOkamaks and NUmerical Simulations [TONUS]
Institut de Recherche Mathématique Avancée [IRMA]
< Réduire
TOkamaks and NUmerical Simulations [TONUS]
Institut de Recherche Mathématique Avancée [IRMA]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Springer Proceedings in Mathematics & Statistics, Springer Proceedings in Mathematics & Statistics, FVCA 2023 - Finite Volumes for Complex Applications X, 2023-10-30, Strasbourg. 2023-10-13, vol. PROMS-433, p. 171-179
Springer Nature Switzerland
Résumé en anglais
We present a two-dimensional extension to the linear implicit all-speed finite volume scheme for hyperbolic conservation laws based on Jin-Xin relaxation recently forwarded in [6]. It is based on stiffly accurate SDIRK ...Lire la suite >
We present a two-dimensional extension to the linear implicit all-speed finite volume scheme for hyperbolic conservation laws based on Jin-Xin relaxation recently forwarded in [6]. It is based on stiffly accurate SDIRK methods in time and a convex combination of Rusanov and centered fluxes in space making it asymptotically consistent in the low Mach number regime and allows an accurate capturing of material waves under large time steps. The scheme is numerically tested on the Euler equations and a non-linear model for elasticity in the compressible and low Mach number regime.< Réduire
Mots clés en anglais
All-speed scheme
Relaxation method
Eulerian elasticity
Linearly implicit schemes
Origine
Importé de halUnités de recherche