Analysis of a finite volume method for a cross-diffusion model in population dynamics
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
< Réduire
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Langue
en
Article de revue
Ce document a été publié dans
Mathematical Models and Methods in Applied Sciences. 2011, vol. 21, n° 02, p. 307-344
World Scientific Publishing
Résumé en anglais
The main goal of this work is to propose a convergent finite volume method for a reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then standard ...Lire la suite >
The main goal of this work is to propose a convergent finite volume method for a reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to S.N.~Kruzhkov. The proofs of these results are given in the Appendix.< Réduire
Mots clés en anglais
Cross-diffusion
finite volume approximation
convergence to the weak solution
pattern-formation
Origine
Importé de halUnités de recherche