A gradient reconstruction formula for finite volume schemes and discrete duality
BENDAHMANE, Mostafa
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Centro de Investigación en Ingeniería Matemática [Concepción] [CI²MA]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Finite Volumes for Complex Applications V, Finite Volumes for Complex Applications V, Finite volumes for complex applications V, 2008-06, Aussois. 2008p. pp. 161-168
ISTE, London; John Wiley & Sons
Résumé en anglais
We point out a simple 2D formula to reconstruct the discrete gradient on a polygon from the values given at the vertices. Together with a finite volume kind divergence reconstruction, this discrete gradient can be used for ...Lire la suite >
We point out a simple 2D formula to reconstruct the discrete gradient on a polygon from the values given at the vertices. Together with a finite volume kind divergence reconstruction, this discrete gradient can be used for discretization of various PDEs, such as fully nonlinear (or linear anisotropic) diffusion problems, starting from rather general meshes. Its key advantage is the discrete integration-by-parts formula, known as the discrete duality property. Our approach allows us to preserve the crucial properties of the continuous diffusion operators (such as the monotonicity, the coercivity, the variational structure) at the discrete level. Further, we apply the same formula in the context of 3D “double” schemes, in the spirit of [Hermeline 98, 07] and [Domelevo, Omnes 05]; we give the associated discrete duality formula. In the case of meshes with the orthogonality condition, we also give a discrete entropy dissipation formula. As an example, we obtain convergence of “double” finite volume discretizations to the entropy solution of a model doubly nonlinear hyperbolic-parabolic equation.< Réduire
Mots clés en anglais
Finite volume approximation
Discrete gradient
Discrete duality
DDFV
Consistency
Dimension three
Anisotropic elliptic problems
General mesh
Origine
Importé de halUnités de recherche