Class invariants by the CRT method
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Ninth Algorithmic Number Theory Symposium ANTS-IX, 2010-07-19, Nancy. 2010, vol. 6197, p. 142-156
Springer-Verlag
Résumé en anglais
We adapt the CRT approach for computing Hilbert class polynomials to handle a wide range of class invariants. For suitable discriminants $D$, this improves its performance by a large constant factor, more than 200 in the ...Lire la suite >
We adapt the CRT approach for computing Hilbert class polynomials to handle a wide range of class invariants. For suitable discriminants $D$, this improves its performance by a large constant factor, more than 200 in the most favourable circumstances. This has enabled record-breaking constructions of elliptic curves via the CM method, including examples with $|D|>10^{15}$.< Réduire
Origine
Importé de halUnités de recherche