Computing (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Mathematics of Computation. 2015, vol. 84, n° 294, p. 1953-1975
American Mathematical Society
Résumé en anglais
In this paper, we compute l-isogenies between abelian varieties over a field of characteristic different from 2 in polynomial time in l, when l is an odd prime which is coprime to the characteristic. We use level n symmetric ...Lire la suite >
In this paper, we compute l-isogenies between abelian varieties over a field of characteristic different from 2 in polynomial time in l, when l is an odd prime which is coprime to the characteristic. We use level n symmetric theta structure where n = 2 or n = 4. In a second part of this paper we explain how to convert between Mumford coordinates of Jacobians of genus 2 hyperelliptic curves to theta coordinates of level 2 or 4. Combined with the preceding algorithm, this gives a method to compute (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves.< Réduire
Projet Européen
Algorithmic Number Theory in Computer Science
Project ANR
Courbes Hyperelliptiques : Isogénies et Comptage - ANR-09-BLAN-0020
Origine
Importé de halUnités de recherche