Approximation of the value function of an impulse control problem of Piecewise Deterministic Markov Processes
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Communication dans un congrès
Ce document a été publié dans
18th IFAC world congress, 18th IFAC world congress, 18th IFAC world congress, 2011, Milano. 2011p. TuA09.2
Résumé en anglais
This paper presents a numerical method to approximate the value function for a general discounted impulse control problem for piecewise deterministic Markov processes. Our approach is based on a quantization technique for ...Lire la suite >
This paper presents a numerical method to approximate the value function for a general discounted impulse control problem for piecewise deterministic Markov processes. Our approach is based on a quantization technique for the underlying Markov chain defined by the post jump locations and inter-arrival times. Convergence results are obtained and more importantly we are able to give a convergence rate of the algorithm. This paper is illustrated by an example.< Réduire
Mots clés en anglais
hybrid processes
piecewise deterministic Markov processes
quantization
convergence of numerical method
dynamic programming
numeric control
Origine
Importé de halUnités de recherche