List-Decoding of Binary Goppa Codes up to the Binary Johnson Bound
AUGOT, Daniel
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
COUVREUR, Alain
Algorithmic number theory for cryptology [TANC]
Institut de Mathématiques de Bordeaux [IMB]
Algorithmic number theory for cryptology [TANC]
Institut de Mathématiques de Bordeaux [IMB]
AUGOT, Daniel
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
COUVREUR, Alain
Algorithmic number theory for cryptology [TANC]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Algorithmic number theory for cryptology [TANC]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
IEEE Information Theory Workshop, 2011-10-16, Paraty. 2011-10-16p. 229 - 233
IEEE
Résumé en anglais
We study the list-decoding problem of alternant codes (which includes obviously that of classical Goppa codes). The major consideration here is to take into account the (small) size of the alphabet. This amounts to comparing ...Lire la suite >
We study the list-decoding problem of alternant codes (which includes obviously that of classical Goppa codes). The major consideration here is to take into account the (small) size of the alphabet. This amounts to comparing the generic Johnson bound to the q-ary Johnson bound. The most favourable case is q = 2, for which the decoding radius is greatly improved. Even though the announced result, which is the list-decoding radius of binary Goppa codes, is new, we acknowledge that it can be made up from separate previous sources, which may be a little bit unknown, and where the binary Goppa codes has apparently not been thought at. Only D. J. Bernstein has treated the case of binary Goppa codes in a preprint. References are given in the introduction. We propose an autonomous and simplified treatment and also a complexity analysis of the studied algorithm, which is quadratic in the blocklength n, when decoding away of the relative maximum decoding radius.< Réduire
Origine
Importé de halUnités de recherche