Sliced Inverse Regression for stratified population
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Article de revue
Ce document a été publié dans
Communications in Statistics - Theory and Methods. 2011-09-30, vol. 40, n° 21, p. 3857-3878
Taylor & Francis
Résumé en anglais
In this article, we consider a semiparametric single index regression model involving a real dependent variable Y, a p-dimensional quantitative covariable X, and a categorical predictor Z which defines a stratification of ...Lire la suite >
In this article, we consider a semiparametric single index regression model involving a real dependent variable Y, a p-dimensional quantitative covariable X, and a categorical predictor Z which defines a stratification of the population. This model includes a dimension reduction of X via an index X'b. We propose an approach based on sliced inverse regression in order to estimate the space spanned by the common dimension reduction direction b. We establish root square n-consistency of the proposed estimator and its asymptotic normality. Simulation study shows good numerical performance of the proposed estimator in homoscedastic and heteroscedastic cases. Extensions to multiple indices models, q-dimensional response variable, and/or SIR-alpha based methods are also discussed. The case of unbalanced subpopulations is treated. Finally, a practical method to investigate if there is or not a common direction b is proposed.< Réduire
Origine
Importé de halUnités de recherche