Approximation of Markov Decision Processes with General State Space
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Mathematical Analysis and Applications. 2012, vol. 388, n° 2, p. 1254-1267
Elsevier
Résumé en anglais
We deal with a discrete-time finite horizon Markov decision process with locally compact Borel state and action spaces, and possibly unbounded cost function. Based on Lipschitz continuity of the elements of the control ...Lire la suite >
We deal with a discrete-time finite horizon Markov decision process with locally compact Borel state and action spaces, and possibly unbounded cost function. Based on Lipschitz continuity of the elements of the control model, we propose a state and action discretization procedure for approximating the optimal value function and an optimal policy of the original control model. We provide explicit bounds on the approximation errors. Our results are illustrated by a numerical application to a fisheries management problem.< Réduire
Origine
Importé de halUnités de recherche