The Logvinenko-Sereda Theorem for the Fourier-Bessel transform
GHOBBER, Saifallah
Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
Analyse harmonique et fonctions spéciales
Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
Analyse harmonique et fonctions spéciales
GHOBBER, Saifallah
Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
Analyse harmonique et fonctions spéciales
< Réduire
Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
Analyse harmonique et fonctions spéciales
Langue
en
Article de revue
Ce document a été publié dans
Integral Transforms and Special Functions. 2013, vol. 24, p. 470-484
Taylor & Francis
Résumé en anglais
The aim of this paper is to establish an analogue of Logvinenko-Sereda's theorem for the Fourier-Bessel transform (or Hankel transform) $\ff_\alpha$ of order $\alpha>-1/2$. Roughly speaking, if we denote by $PW_\alpha(b)$ ...Lire la suite >
The aim of this paper is to establish an analogue of Logvinenko-Sereda's theorem for the Fourier-Bessel transform (or Hankel transform) $\ff_\alpha$ of order $\alpha>-1/2$. Roughly speaking, if we denote by $PW_\alpha(b)$ the Paley-Wiener space of $L^2$-functions with Fourier-Bessel transform supported in $[0,b]$, then we show that the restriction map $f\to f|_\Omega$ is essentially invertible on $PW_\alpha(b)$ if and only if $\Omega$ is sufficiently dense. Moreover, we give an estimate of the norm of the inverse map. As a side result we prove a Bernstein type inequality for the Fourier-Bessel transform.< Réduire
Mots clés en anglais
Fourier-Bessel transform
Hankel transform
uncertainty principle
strong annihilating pairs
Origine
Importé de halUnités de recherche