Poisson skeleton Revisited: A new mathematical perspective
Langue
en
Article de revue
Ce document a été publié dans
Journal of Mathematical Imaging and Vision. 2014-01-01, vol. 48, n° 1, p. 149-159
Springer Verlag
Résumé en anglais
This paper is concerned with the computation of the skeleton of a shape $\Omega$ included in $\R^2$. We show some connections between the Euclidean distance function $d$ to $\partial \Omega$ and the solution $u$ of the ...Lire la suite >
This paper is concerned with the computation of the skeleton of a shape $\Omega$ included in $\R^2$. We show some connections between the Euclidean distance function $d$ to $\partial \Omega$ and the solution $u$ of the Poisson problem $\Delta u(x)=-1$ if $x$ is in $\Omega$ and $u(x)=0$ if $x$ is on $\partial \Omega$. This enables us to propose a new and fast algorithm to compute an approximation of the skeleton of $\partial \Omega$. We illustrate the approach with some numerical experiments.< Réduire
Mots clés
Skeleton
Poisson equation
distance function
PDEs
ODEs
Origine
Importé de halUnités de recherche