Reverse Carleson Embeddings for Model Spaces
Langue
en
Article de revue
Ce document a été publié dans
Journal of the London Mathematical Society. 2013, vol. 88, p. 437-464
London Mathematical Society ; Wiley
Résumé en anglais
The classical embedding theorem of Carleson deals with finite positive Borel measures $\mu$ on the closed unit disk for which there exists a positive constant $c$ such that $\|f\|_{L^2(\mu)} \leq c \|f\|_{H^2}$ for all $f ...Lire la suite >
The classical embedding theorem of Carleson deals with finite positive Borel measures $\mu$ on the closed unit disk for which there exists a positive constant $c$ such that $\|f\|_{L^2(\mu)} \leq c \|f\|_{H^2}$ for all $f \in H^2$, the Hardy space of the unit disk. Lefévre et al.\ examined measures $\mu$ for which there exists a positive constant $c$ such that $\|f\|_{L^2(\mu)} \geq c \|f\|_{H^2}$ for all $f \in H^2$. The first type of inequality above was explored with $H^2$ replaced by one of the model spaces $(\Theta H^2)^{\perp}$ by Aleksandrov, Baranov, Cohn, Treil, and Volberg. In this paper we discuss the second type of inequality in $(\Theta H^2)^{\perp}$.< Réduire
Mots clés en anglais
model spaces
embeddings
dominating sets
Carleson measures
Clark measures
Origine
Importé de halUnités de recherche