Orthogonal rotation in PCAMIX
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Article de revue
Ce document a été publié dans
Advances in Data Analysis and Classification. 2012, vol. 6, p. 131-146
Springer Verlag
Résumé en anglais
Kiers (1991) considered the orthogonal rotation in PCAMIX, a principal component method for a mixture of qualitative and quantitative variables. PCAMIX includes the ordinary principal component analysis (PCA) and multiple ...Lire la suite >
Kiers (1991) considered the orthogonal rotation in PCAMIX, a principal component method for a mixture of qualitative and quantitative variables. PCAMIX includes the ordinary principal component analysis (PCA) and multiple correspondence analysis (MCA) as special cases. In this paper, we give a new presentation of PCAMIX where the principal components and the squared loadings are obtained from a Singular Value Decomposition. The loadings of the quantitative variables and the principal coordinates of the categories of the qualitative variables are also obtained directly. In this context, we propose a computationaly efficient procedure for varimax rotation in PCAMIX and a direct solution for the optimal angle of rotation. A simulation study shows the good computational behavior of the proposed algorithm. An application on a real data set illustrates the interest of using rotation in MCA. All source codes are available in the R package "PCAmixdata".< Réduire
Mots clés en anglais
MIXTURE OF QUALITATIVE AND QUANTITATIVE DATA MULTIPLE CORRESPONDENCE ANALYSIS
Origine
Importé de halUnités de recherche