Minoration de la hauteur de Neron-Tate sur les surfaces abeliennes
PAZUKI, Fabien
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
PAZUKI, Fabien
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Manuscripta mathematica. 2013p. 10.1007/s00229-012-0593-7
Springer Verlag
Resumen en inglés
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height ...Leer más >
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive as corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.< Leer menos
Orígen
Importado de HalCentros de investigación