Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality
Langue
en
Article de revue
Ce document a été publié dans
Journal of Functional Analysis. 2012, vol. 262, n° 6, p. 2646-2676
Elsevier
Résumé en anglais
Let $\M$ be a smooth connected manifold endowed with a smooth measure $\mu$ and a smooth locally subelliptic diffusion operator $L$ which is symmetric with respect to $\mu$. We assume that $L$ satisfies a generalized ...Lire la suite >
Let $\M$ be a smooth connected manifold endowed with a smooth measure $\mu$ and a smooth locally subelliptic diffusion operator $L$ which is symmetric with respect to $\mu$. We assume that $L$ satisfies a generalized curvature dimension inequality as introduced by Baudoin-Garofalo \cite{BG1}. Our goal is to discuss functional inequalities for $\mu$ like the Poincaré inequality, the log-Sobolev inequality or the Gaussian logarithmic isoperimetric inequality.< Réduire
Origine
Importé de halUnités de recherche