Euclidean totally definite quaternion fields over the rational field and over quadratic number fields
CERRI, Jean-Paul
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
CERRI, Jean-Paul
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Number Theory. 2013-01-31, vol. 9, n° 3, p. 653-673
World Scientific Publishing
Résumé en anglais
In this article we study totally definite quaternion fields over the rational field and over quadratic number fields. We establish a complete list of all such fields which are Euclidean. Moreover, we prove that every field ...Lire la suite >
In this article we study totally definite quaternion fields over the rational field and over quadratic number fields. We establish a complete list of all such fields which are Euclidean. Moreover, we prove that every field in this list is in fact norm-Euclidean. The proofs are both theoretical and algorithmic.< Réduire
Mots clés en anglais
Euclidean order
norm-Euclidean order.
norm-Euclidean order
Quaternion field
Euclidean algorithm
Origine
Importé de halUnités de recherche