A Bilayer Representation of the Human Atria
VIGMOND, Edward
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
LABARTHE, Simon
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
VIGMOND, Edward
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
LABARTHE, Simon
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Langue
en
Communication dans un congrès
Ce document a été publié dans
EMBC - 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, 2013-07-03, Osaka. 2013-10-17p. 1530-1533
IEEE
Résumé en anglais
Atrial fibrillation is the most commonly encountered clinical arrhythmia. Despite recent advances in treatment by catheter ablation, its origin is still incompletely understood and it may be difficult to treat. Computer ...Lire la suite >
Atrial fibrillation is the most commonly encountered clinical arrhythmia. Despite recent advances in treatment by catheter ablation, its origin is still incompletely understood and it may be difficult to treat. Computer modelling offers an attractive complement to experiment. Simulations of fibrillation, however, are computationally demanding since the phenomenon requires long periods of observation. Because the atria are thin walled structures, they are often modelled as surfaces. However, this may not always be appropriate as the crista terminalis and pectinate muscles are discrete fibrous structures lying on the endocardium and cannot be incorporated into the surface. In the left atrium, there are essentially two layers with an abrupt change in fibre orientation between them. We propose a double layer method, using shell elements to incorporate wall thickness, where fibre direction is independent in each layer and layers are electrically linked. Starting from human multi- detector CT (MDCT) images, we extracted surfaces for the atria and manually added a coronary sinus. Propagation of electrical activity was modelled with the monodomain equation. Results indicate that major features are retained while reducing computation cost considerably. Meshes based on the two layer approach will facilitate studies of AF.< Réduire
Origine
Importé de halUnités de recherche