Composition operators on generalized Hardy spaces
Langue
en
Article de revue
Ce document a été publié dans
Complex Analysis and Operator Theory. 2015, vol. 119, p. 354-381
Springer Verlag
Résumé en anglais
Let $\Omega_1,\Omega_2\subset {\mathbb C}$ be bounded domains. Let $\phi:\Omega_1\rightarrow \Omega_2$ holomorphic in $\Omega_1$ and belonging to $W^{1,\infty}_{\Omega_2}(\Omega_1)$. We study the composition operators ...Lire la suite >
Let $\Omega_1,\Omega_2\subset {\mathbb C}$ be bounded domains. Let $\phi:\Omega_1\rightarrow \Omega_2$ holomorphic in $\Omega_1$ and belonging to $W^{1,\infty}_{\Omega_2}(\Omega_1)$. We study the composition operators $f\mapsto f\circ\phi$ on generalized Hardy spaces on $\Omega_2$, recently considered in \cite{bfl, BLRR}. In particular, we provide necessary and/or sufficient conditions on $\phi$, depending on the geometry of the domains, ensuring that these operators are bounded, invertible, isometric or compact. Some of our results are new even for Hardy spaces of analytic functions.< Réduire
Mots clés en anglais
composition operators
conjugate Beltrami equation
Generalized Hardy spaces
Origine
Importé de halUnités de recherche