Maximal Regularity for Non-Autonomous Second Order Cauchy Problems
Langue
en
Article de revue
Ce document a été publié dans
Integr. Eqs and Op. Theory. 2014, vol. 78, n° 3, p. 427-450
Résumé en anglais
We consider non-autonomous wave equations \[ \left\{ \begin{aligned} &\ddot u(t) + \B(t)\dot u(t) + \A(t)u(t) = f(t) \quad t\text{-a.e.}\\ &u(0)=u_0,\, \dot u(0) = u_1. \end{aligned} \right. \] where the operators $\A(t)$ ...Lire la suite >
We consider non-autonomous wave equations \[ \left\{ \begin{aligned} &\ddot u(t) + \B(t)\dot u(t) + \A(t)u(t) = f(t) \quad t\text{-a.e.}\\ &u(0)=u_0,\, \dot u(0) = u_1. \end{aligned} \right. \] where the operators $\A(t)$ and $\B(t)$ are associated with time-dependent sesquilinear forms $\fra(t,.,.)$ and $\frb$ defined on a Hilbert space $H$ with the same domain $V$. The initial values satisfy $ u_0 \in V$ and $u_1 \in H$. We prove well-posedness and maximal regularity for the solution both in the spaces $V'$ and $H$. We apply the results to non-autonomous Robin-boundary conditions and also use maximal regularity to solve a quasilinear problem.< Réduire
Mots clés en anglais
wave equation
Sesquilinear forms
non-autonomous evolution equations
maximal regularity
non-linear heat equations
wave equation.
Project ANR
Aux frontières de l'analyse Harmonique - ANR-12-BS01-0013
Origine
Importé de halUnités de recherche