Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $H := H_{0} + V$ and $H_{\perp} := H_{0,\perp} + V$ be respectively perturbations of the free Schrödinger operators $H_{0}$ on $L^{2}\big(\mathbb{R}^{2d+1}\big)$ and $H_{0,\perp}$ on $L^{2}\big(\mathbb{R}^{2d}\big)$, ...Lire la suite >
Let $H := H_{0} + V$ and $H_{\perp} := H_{0,\perp} + V$ be respectively perturbations of the free Schrödinger operators $H_{0}$ on $L^{2}\big(\mathbb{R}^{2d+1}\big)$ and $H_{0,\perp}$ on $L^{2}\big(\mathbb{R}^{2d}\big)$, $d \geq 1$ with constant magnetic field of strength $b>0$, and $V$ is a complex relatively compact perturbation. We prove Lieb-Thirring type inequalities for the discrete spectrum of $H$ and $H_{\perp}$. In particular, these estimates give $a\, priori$ information on the distribution of the discrete eigenvalues around the Landau levels of the operator, and describe how fast sequences of eigenvalues converge.< Réduire
Mots clés en anglais
Magnetic Schrödinger operators
Lieb-Thirring type inequalities
non self-adjoint relatively compact perturbations.
non self-adjoint relatively compact perturbations
Origine
Importé de halUnités de recherche