Computing class polynomials for abelian surfaces
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Experimental Mathematics. 2014, vol. 23, n° 2, p. 129-145
Taylor & Francis
Resumen en inglés
We describe a quasi-linear algorithm for computing Igusa class polynomials of Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations ...Leer más >
We describe a quasi-linear algorithm for computing Igusa class polynomials of Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating ϑ- constants in quasi-linear time using Newton iterations on the Borchardt mean. We report on experiments with our implementation and present an example with class number 20016.< Leer menos
Palabras clave en inglés
Number theory
Complex Multiplication
Theta functions
Proyecto europeo
Algorithmic Number Theory in Computer Science
Orígen
Importado de HalCentros de investigación