Tunnel effect for semiclassical random walks
Langue
en
Article de revue
Ce document a été publié dans
Analysis & PDE. 2015, vol. 8, n° 2, p. 289–332
Mathematical Sciences Publishers
Résumé en anglais
We study a semiclassical random walk with respect to a probability measure with a finite number n_0 of wells. We show that the associated operator has exactly n_0 exponentially close to 1 eigenvalues (in the semiclassical ...Lire la suite >
We study a semiclassical random walk with respect to a probability measure with a finite number n_0 of wells. We show that the associated operator has exactly n_0 exponentially close to 1 eigenvalues (in the semiclassical sense), and that the other are O(h) away from 1. We also give an asymptotic of these small eigenvalues. The key ingredient in our approach is a general factorization result of pseudodifferential operators, which allows us to use recent results on the Witten Laplacian.< Réduire
Mots clés en anglais
Semiclassical analysis
Spectral theory
Probability
Project ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche