Compact operators that commute with a contraction
Langue
en
Article de revue
Ce document a été publié dans
Integral Equations and Operator Theory. 2009, vol. 65, n° 4, p. 543-550
Springer Verlag
Résumé en anglais
Let $T$ be a $C_0$--contraction on a separable Hilbert space. We assume that $I_H-T^*T$ is compact. For a function $f$ holomorphic in the unit disk $\DD$ and continuous on $\overline\DD$, we show that $f(T)$ is compact if ...Lire la suite >
Let $T$ be a $C_0$--contraction on a separable Hilbert space. We assume that $I_H-T^*T$ is compact. For a function $f$ holomorphic in the unit disk $\DD$ and continuous on $\overline\DD$, we show that $f(T)$ is compact if and only if $f$ vanishes on $\sigma (T)\cap \TT$, where $\sigma (T)$ is the spectrum of $T$ and $\TT$ the unit circle. If $f$ is just a bounded holomorphic function on $\DD$, we prove that $f(T)$ is compact if and only if $\lim\limits_{n\to \infty} T^nf(T) =0$.< Réduire
Mots clés en anglais
Compact operators
essentially unitary
commutant
Origine
Importé de halUnités de recherche