Poisson noise reduction with non-local PCA
Langue
en
Article de revue
Ce document a été publié dans
Journal of Mathematical Imaging and Vision. 2014-02-01, vol. 48, n° 2, p. 279-294
Springer Verlag
Résumé en anglais
Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons collected by a sensor is small relative to the desired image ...Lire la suite >
Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons collected by a sensor is small relative to the desired image resolution. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse representations for image patches. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be highly competitive in very low light regimes.< Réduire
Mots clés en anglais
Image denoising
PCA
Gradient methods
Newton's method
Signal representations
Origine
Importé de halUnités de recherche