The commutant of an operator with bounded conjugation orbits and $C_0$-contractions.
Idioma
en
Article de revue
Este ítem está publicado en
Extracta Mathematicae. 2012, vol. 27, n° 2, p. 175-185
Resumen en inglés
Let $A$ be an invertible bounded linear operator on a complex Banach space, $\{A\}'$ the commutant of $A$ and $B_A$ the set of all operators $T$ such that $\sup_{n\geq 0} \|A^nTA^{-n}\|<+\infty$. Equality $\{A\}'= B_A$ was ...Leer más >
Let $A$ be an invertible bounded linear operator on a complex Banach space, $\{A\}'$ the commutant of $A$ and $B_A$ the set of all operators $T$ such that $\sup_{n\geq 0} \|A^nTA^{-n}\|<+\infty$. Equality $\{A\}'= B_A$ was studied by many authors for differents classes of operators. In this paper we investigate a local version of this equality and the case where $A$ is a $C_0$-contraction.< Leer menos
Palabras clave en inglés
Operators
commutant
bounded conjugation orbit
$C_0$--contraction
Orígen
Importado de HalCentros de investigación