ASYMPTOTIC-PRESERVING SCHEME FOR THE FOKKER-PLANCK-LANDAU-MAXWELL SYSTEM IN THE QUASI-NEUTRAL REGIME.
GUISSET, Sébastien
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
D'HUMIÈRES, Emmanuel
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
GUISSET, Sébastien
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
D'HUMIÈRES, Emmanuel
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
DUBROCA, Bruno
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
This work deals with the numerical resolution of the Fokker-Planck-Maxwell system in the quasi-neutral regime. In this regime the sti ness of the stability constraints of classic schemes causes huge calculation times. That ...Lire la suite >
This work deals with the numerical resolution of the Fokker-Planck-Maxwell system in the quasi-neutral regime. In this regime the sti ness of the stability constraints of classic schemes causes huge calculation times. That is why, we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in di erent regimes. The rst one shows the e ciency of the Asymptotic-Preserving scheme in the quasi-neutral regime whereas the second one on the contrary corresponds to a regime where electromagnetic e ects are predominant.< Réduire
Mots clés
angular M1 moments model
Asymptotic-Preserving scheme
Fokker-Planck-Landau equation
Maxwell equations
quasi-neutral limit
angular M1 moments model.
Origine
Importé de halUnités de recherche