Effective models and extension of torsors over a discrete valuation ring of unequal characteristic
Langue
en
Article de revue
Ce document a été publié dans
International Mathematics Research Notices. 2008, vol. 2008, p. 68
Oxford University Press (OUP)
Résumé en anglais
Let R be a discrete valuation ring of unequal characteristic with fraction field K which contains a primitive p^2-th root of unity. Let X be a faithfully flat R-scheme and G be a finite abstract group. Let us consider a ...Lire la suite >
Let R be a discrete valuation ring of unequal characteristic with fraction field K which contains a primitive p^2-th root of unity. Let X be a faithfully flat R-scheme and G be a finite abstract group. Let us consider a G-torsor Y_K\to X_K and let Y be the normalization of X_K in Y. If G=Z/p^n Z, n<3, under some hypothesis on X, we attach some invariants to Y_K \to X_K. If p>2, we determine, through these invariants, when Y\to X has a structure of torsor which extends that of Y_K\to X_K. Moreover we explicitly calculate the effective model (defined by Romagny) of the action of G on Y.< Réduire
Mots clés
torseurs
schémas en groupes
Origine
Importé de halUnités de recherche