Models of $\mu_{p^2,K}$ over a discrete valuation ring
Langue
en
Article de revue
Ce document a été publié dans
Journal of Algebra. 2010, vol. 323, n° 7, p. 1908-1957
Elsevier
Résumé en anglais
Let R be a discrete valuation ring with residue field of characteristic p>0. Let K be its fraction field. We prove that any finite and flat R-group scheme, isomorphic to \mu_{p^2,K} on the generic fiber, is the kernel in ...Lire la suite >
Let R be a discrete valuation ring with residue field of characteristic p>0. Let K be its fraction field. We prove that any finite and flat R-group scheme, isomorphic to \mu_{p^2,K} on the generic fiber, is the kernel in a short exact sequence which generically coincides with the Kummer sequence. We will explicitly describe and classify such models. In the appendix X. Caruso shows how to classify models of \mu_{p^2,K}, in the case of unequal characteristic, using the Breuil-Kisin theory.< Réduire
Mots clés
schémas en groupes
Origine
Importé de halUnités de recherche