Uniform local existence for inhomogeneous rotating fluid equations
Langue
en
Article de revue
Ce document a été publié dans
J. Dynam. Differential Equations. 2009, vol. 21, n° 1, p. 21-44
Résumé en anglais
We investigate the equations of anisotropic incompressible viscous fluids in $\R^3$, rotating around an inhomogeneous vector $B(t, x_1, x_2)$. We prove the global existence of strong solutions in suitable anisotropic Sobolev ...Lire la suite >
We investigate the equations of anisotropic incompressible viscous fluids in $\R^3$, rotating around an inhomogeneous vector $B(t, x_1, x_2)$. We prove the global existence of strong solutions in suitable anisotropic Sobolev spaces for small initial data, as well as uniform local existence result with respect to the Rossby number in the same functional spaces under the additional assumption that $B = B(t, x_1)$ or $B = B(t, x_2)$. We also obtain the propagation of the isotropic Sobolev regularity using a new refined product law.< Réduire
Origine
Importé de halUnités de recherche