A Spectral Multiplier Theorem for Non-Self-Adjoint Operators
Langue
en
Article de revue
Ce document a été publié dans
Transactions of the American Mathematical Society. 2009, vol. 361, n° 12, p. 6567-6582
American Mathematical Society
Résumé en anglais
We prove a spectral multiplier theorem for non-self-adjoint operators. More precisely, we consider non-self-adjoint operators A : D(A) ⊂ L2 → L2 having numerical range in a sector Σ(w) of angle w, and whose heat kernel ...Lire la suite >
We prove a spectral multiplier theorem for non-self-adjoint operators. More precisely, we consider non-self-adjoint operators A : D(A) ⊂ L2 → L2 having numerical range in a sector Σ(w) of angle w, and whose heat kernel satisfies a Gaussian upper bound. We prove that for every bounded holomorphic function f on Σ(w), f(A) acts on Lp with Lp−norm estimated by the behavior of a finite number of derivatives of f on the boundary of Σ(w).< Réduire
Mots clés en anglais
Spectral multipliers
harmonic analysis
functional calculus
Origine
Importé de halUnités de recherche